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SUMMARY

Subanesthetic doses of the psychomimetic, ketamine, have been used for many years to eli-

cit behavioral effects reminiscent of schizophrenia in both healthy humans and in animal

models of the disease. More recently, there has been a move toward the use of simple neu-

rophysiological measures (event-related potentials, brain oscillations) to assay the func-

tional integrity of neuronal circuits in schizophrenia as these measures can be assessed in

patients, healthy controls, intact animals, and even in brain slices. Furthermore, alterations

of these measures are correlated with basic information processing deficits that are now

considered central to the disease. Thus, here we review recent studies that determine the

effect of ketamine on these measures and discuss to what extent they recapitulate findings

in patients with schizophrenia. In particular, we examine methodological differences

between human and animal studies and compare in vivo and in vitro effects of ketamine.

Ketamine acts on multiple cortical and subcortical sites, as well as on receptors other than

the N-methyl-D-aspartate receptor. Acute ketamine models’ changes correlated with psy-

chotic states (e.g. increased baseline gamma-band oscillations), whereas chronic ketamine

causes cortical circuit changes and neurophysiological deficits (e.g. impaired event-related

gamma-band oscillations) correlated with cognitive impairments in schizophrenia.

Contemporary views of schizophrenia have shifted from altera-

tions in dopamine neurotransmission to impaired information

processing. Cognitive impairment is regarded as the primary core

deficit, resulting from dysfunction of neuronal microcircuits. The

significance for pharmacology is an extension of potential thera-

peutic targets from neuromodulatory systems, that is, from the

original D2 and the more recent combinations of aminergic recep-

tor antagonists to neurotransmitters operating on the level of

these microcicuits, that is, glutamate and GABA. Research focus-

ing on the primary transmitters involved in neuronal network

dynamics is conducted in the framework of the N-methyl-D-aspar-

tate (NMDA) receptor hypofunction hypothesis. This is one of the

most powerful current models of schizophrenia, with a strong

translational potential from rodents to primates to healthy sub-

jects to patients with schizophrenia. This hypothesis originated

from early observations of ketamine and other NMDA receptor

(NMDAR) antagonists’ ability to elicit (in healthy subjects [1]) or

exacerbate (in schizophrenics [2]) positive psychotic symptoms.

However, recent studies emphasize its validity to also explain cog-

nitive deficits and negative symptoms [3–5], which has tradition-

ally been the weak point of prior, mostly dopamine-based,

models. Positive, psychotic-like symptoms elicited by ketamine

(S-Ketamine, in particular), the basis for its recreational abuse, are

discussed in Chapter 10 of this Special Issue. There are also excel-

lent recent reviews of behavioral and electrophysiological studies

addressing cognitive symptoms and altered neuronal network

dynamics in schizophrenia using different variants of the NMDAR

antagonist model [6–19].

This review will be limited to a critical comparison of the elec-

trophysiological changes induced by ketamine and other NMDAR

antagonists, for example, MK-801 and phencyclidine, with those

observed in patients with schizophrenia and animal models,

which can help to understand the processes involved in cognitive

impairment in schizophrenia. In the past several years, there has

been a rapidly growing interest in electrophysiological markers of

schizophrenia fueled by major technological advancements in

clinical electrophysiology and by fundamental changes in under-

standing the function of cortical networks and in the interpreta-

tion of EEG. This trend is expected to continue, and ketamine,

which can be used both in human and animals, may play an

essential role in developing the right methods and standards for

detecting schizophrenia-relevant cortical dysfunction.
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The Use of Ketamine as a Model of
Schizophrenia-Associated
Neurophysiological Abnormalities

N-methyl-D-aspartate receptor (NMDAR) is an ionotropic gluta-

matergic receptor widely distributed in the brain from spinal cord

to the cortex and implicated in numerous functions from pain to

learning and memory. It is a hetero-oligomeric complex consisting

primarily of two NR1 and two of several types of NR2 subunits

(NR2A-NR2D). NMDAR activation requires not only binding of

glutamate but also a coagonist glycine and a voltage-dependent

removal of the Mg2+ ion blocking the channel at rest. There are

numerous antagonists blocking the glutamate or the glycine bind-

ing sites, the ion pore, or allosteric binding sites. Ketamine belongs

to this latter group of noncompetitive antagonists [20].

Acute administration of NMDAR antagonists to rodents impacts

various CNS functions, from simple motor activity to high-level

cognitive tasks [21]. In nonhuman primates, NMDAR antagonists

evoke sensory, behavioral, and cognitive disturbances [22–24]

similar to responses seen in humans [1]. The dose of ketamine to

induce schizophrenia-relevant deficits is below the anesthetic

dose, that is, 5–10 mg/kg subcutaneous injections [25–27] are

used in rats and 0.3–0.5 mg/kg intravenous injections in human

studies [1,28], compared with 70–80 mg/kg and 1.0–4.5 mg/kg

(2 mg/kg for 5–10 min anesthesia) used for anesthesia in rodents

and human, respectively. It is worth noting that the ketamine

dose found effective for treatment of depression is also 0.5 mg/kg

i/v [29,30]. Thus, there are efforts underway to find a way to

attenuate the ketamine-induced psychotomimetic effect for the

treatment of depression [31–34].

The limitations of behavioral models of schizophrenia have

been recognized, and it has been argued that animal modeling of

inherently human disorders, like schizophrenia, might be impossi-

ble [18]. Recently, an alternative approach emerged by recreating

endophenotypes contributing to schizophrenia in preclinical ani-

mal models [9,12,35–43]. Endophenotypes are heritable, state-

independent biomarkers associated and cosegregating with the ill-

ness [39]. They allow reducing complex psychiatric phenotypes

into components that can be modeled in animals and make

genetic and neurobiological investigation of diseases with high

heterogeneity of genetic etiology and behavioral manifestation

more manageable [35]. The symptoms of acute ketamine injection

show a large overlap with many schizophrenia endophenotypes,

but the analysis of the discrepancies is also important as it may

provide additional information for understanding schizophrenia

pathology. For example, one of the most firmly established schizo-

phrenia endophenotypes, the deficit of prepulse inhibition on

startle (PPI) [44–47], is reproduced by NMDAR antagonism in

rodents [48–50] and primates [51,52] but not in healthy human

subjects where ketamine enhances PPI [53–55].

Electrophysiological Signals

Electrophysiological signals recorded in patients can reflect abnor-

mal neuronal functioning associated with a given disorder, genetic

alteration, or clinical symptom and can be considered as endophe-

notypes. A number of neurophysiology-based endophenotypes, or

candidate endophenotypes, have been recognized in schizophre-

nia [8,9,12,42,43,56–59]. Using neurophysiology-based biomar-

kers, for example, in evaluating drug action, can also provide

unique opportunities to establish translational measures both in

preclinical models and in clinical studies. Some of these biomar-

kers are considered to be related to abnormal glutamate neuro-

transmission and can be elicited with an NMDAR antagonist in

healthy subjects [60]. In these studies, ketamine plays a pivotal

role, as it has been approved as a drug for human administration.

Many of the well-defined electrophysiological biomarkers are clo-

sely linked to NMDAR function, and abnormal neurophysiologic

signals characteristic for schizophrenia can be elicited by

ketamine. Among these markers are auditory gating (P50 and

N100), mismatch negativity (MMN) and the P300 event-related

potential.

Ketamine-Induced Disruption of Auditory Gating

Acoustic stimulation elicits several auditory-evoked potentials

(AEPs) with various latencies, including a positive deflection at

50 ms (P50) and a negative deflection at 100 ms (N100) in

healthy subjects. Repeating the same acoustic stimulation within

sufficiently short intervals (typically at 0.5 s) significantly attenu-

ates the AEPs associated with the second stimuli, a phenomenon

known as auditory gating [61,62]. In various psychiatric and neu-

rological disorders, auditory gating is impaired, although most

likely due to different pathophysiological mechanisms. Impaired

auditory gating has been described in schizophrenia using stan-

dard clinical EEG methodology, as well as by using magnetoen-

cephalography, which confirmed the gating deficit and provided

additional insight to neurological mechanisms contributing to

normal and pathological gating [63,64]. In preclinical animal

models, auditory gating is present, and it can be disrupted via

genetic, epigenetic, and pharmacological manipulations [61].

Importantly, auditory gating can be readily disrupted by ketamine

in healthy subjects [65] as well as in rodents [9,66,67].

Mismatch Negativity and P300

Recording of auditory-evoked potentials in response to deviant

stimuli in an auditory “oddball” paradigm leads to a well-charac-

terized negative deflection at 100 ms, called the MMN, and a posi-

tive deflection at 300 ms (P300). P300 is elicited by attended

oddball stimuli and is generated by both frontal and parietal corti-

cal areas. In patients with schizophrenia, a reduction in P300

amplitude has been well characterized, although abnormalities of

P300 are present in many psychiatric or neurological disorders.

MMN is generated by the auditory cortex, but frontal brain

regions are also crucially implicated in the generation of the MMN

demonstrated by EEG [68–70]and fMRI studies [71–73]. The

MMN can be elicited by unattended stimuli, and abnormal MMN

is considered to be the most closely related endophenotype to

schizophrenia [74]. Impaired generation of both MMN and P300

has been observed after ketamine treatment in humans [75–79],

resembling deficits present in patients with schizophrenic [80,81].

Importantly, the two populations showed the same relationship

between the ketamine-induced MMN memory trace effect and

cognitive impairments [79,80]. It has also been shown recently,
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by using a model-based approach, that ketamine affects synaptic

plasticity during the encoding of the MMN as expressed by a

reduced forward connection from left primary auditory cortex to

superior temporal gyrus and that this model-based estimate of ke-

tamine effects on synaptic plasticity correlated significantly with

ratings of ketamine-induced impairments in cognition and control

[82].

Cortical Oscillations

Cortical oscillations are essential for a variety of cognitive pro-

cesses impaired in schizophrenia [83]. Oscillatory synchronization

organizes neuronal activity in local microcircuits and supports

long-range dynamic connections, also impaired in schizophrenia

[83]. They depend on a functioning network of fast-firing inter-

neurons that show structural abnormalities in human postmortem

brains [84–88] of schizophrenics, suggesting that impaired neuro-

nal oscillations serve as a mechanistic link between deficiencies of

the interneuron network and cognitive dysfunction. Develop-

mental abnormalities of parvalbumin-positive interneurons are

consistently observed in chronic animal models produced by a

variety of techniques [27,89–97], and in the past several years, it

has also been firmly established that the essential features of

human schizophrenia recapitulated by rodent models include

abnormal oscillations in low- (delta, theta) and in the high-(beta,

gamma)frequency bands [25–27,48,89,98–111].

Ketamine and other NMDAR antagonists cause severe perturba-

tions in cortical oscillations at different frequencies, which, in gen-

eral, resemble those in schizophrenia. Comparison of impaired

oscillations in schizophrenia and those induced by ketamine

administration in humans and in a variety of animal models, how-

ever, is not always straightforward and differs in important details.

Some of the differences, however, may be due to differences in

the recording techniques/experimental design and might thus

point to inadequacies of the recording paradigms used for assess-

ment of oscillatory impairment in schizophrenics rather than to

limited validity of the animal model.

Gamma-Band Oscillations

Significant alterations of the electrical activity in the gamma band

(30–90 Hz) have been documented in patients with schizophrenia

[112–122] and in most animal models studied to date

[89,99,106,107] (Table 1). Extensive research in this area has

clarified several key issues and led to the proposal that a “gamma

oscillatory endophenotype” [8] underlies downstream phenotypic

cognitive deficits characteristic of schizophrenia. Specific thera-

peutic targeting of gamma-band deficits has also been suggested

[8], and an intermediate oscillatory phenotype has also proven a

more fruitful correlation target than behavioral measures for iden-

tifying genetic biomarkers in some human imaging studies [123].

Gamma-band oscillations (GBO) alterations also appear in the

acute state after administration of NMDAR antagonists to healthy

humans [28,124,125] or patients with schizophrenia [125]

(Table 1). They are also apparent in in vivo [25–27,48,100,109,126

–128] and in vitro [129–131] preclinical studies in rodents, but

there are inconsistencies between studies using different experi-

mental paradigms. The most prominent discrepancy is that

whereas NMDA blockade induces a massive increase in gamma

activity, the current human schizophrenia EEG literature is domi-

nated by reports of GBO deficits (revs. [8,83,132,133]). Until

recently, animal models have also been focused on decreased

GBO. These studies were designed to evaluate oscillations during

cognitive tasks and postulated that a decrease in GAD67 and PV

expression, the most consistent postmortem histological marker of

schizophrenia, leads to attenuated GBO activity. During the past

decade, a number of experimental paradigms and signal analysis

methods were developed and standardized, which produced a

wealth of data demonstrating the link between cognitive deficits

and impaired synchrony in schizophrenia. Animal models gener-

ated by a variety of interventions also revealed a final common

pattern of anatomical abnormalities of parvalbumin-expressing

interneurons, cognitive deficits, and decreased gamma power in

schizophrenia-relevant tasks or in sensory paradigms directly rep-

licating those performed in humans [89,106].

However, the recent demonstration of increased gamma-band

power after administration of subanesthetic doses of ketamine

associated with schizophrenia-relevant behavior in rats [25]

turned attention to earlier sporadic reports of increased, that is,

rather than decreased, GBO activity in patients with schizophre-

nia. Most of these earlier studies recorded baseline activity in the

high beta and gamma range in default mode or resting-state para-

digms (rev.[8]), but a few also showed increased gamma activity

directly associated with positive symptoms [122,134,135]. The rel-

evance of these data is further underscored by verification of the

gamma-enhancing effect of ketamine in humans [28,124] and the

demonstration of increased background gamma activity in differ-

ent chronic rodent models of schizophrenia, some of which

showed both increased baseline and decreased task-related GBO

[99,101,107,136,137]. This prompted revisiting the issue of back-

ground GBO, which should be expanded in the future using

today’s advanced recording and analysis techniques [138,139]. In

fact, an overall increase in high-frequency EEG activity (>30 Hz)

in schizophrenics compared with healthy controls was demon-

strated in the dawn of computerized EEG 40 years ago, using ana-

logue filters and the first versions of digital spectral analysis

[140,141]. The pattern revealed in these 24-h EEG recordings

(increased high-frequency activity along with decreased theta/

alpha and increased delta-band activities) corresponds with that

seen in extended EEG recordings in rodent models during the ani-

mals’ natural states and behaviors [99,101,107,136,137] and with

acute changes in EEG after ketamine [25,27,48,109,142]. There

are current efforts to solve technical-related problems including

the difficulties of the elimination of the microsaccade artifact or

the problem related to the practice of standardizing evoked

responses using prestimulus “background” activity. This latter was

recently shown to increase in the acute NMDAR antagonist model

in mice [26] and in a reanalysis of earlier data of human ASSR

[112]. It is important that these studies followed similar protocols

in human and animals, but the prestimulus segments they used

for evaluation of background GBO remain tied to repetitive

sensory test stimuli and thus might have been compromised

by increased neuronal activity induced in sensory cortex by

extended stimulation, especially at short interstimulus intervals

[134,143,144]. Stimulus parameters may strongly affect the level

of this activation as well as the ASSR itself; when using longer
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stimulus duration and interstimulus interval, gamma-band ASSR

was shown to increase (rather than decrease) in schizophrenics

relative to healthy controls [133].

Investigation of Ketamine Effect on GBO In Vitro

Although GBO are generally considered to be generated within

specific cortical areas, GBO abnormalities in schizophrenia or with

application of NMDAR antagonists can be due to changes occur-

ring locally in the cortical area underlying the EEG electrode or

due to impaired connections with other cortical or subcortical sites

involved in their state- or event-related modulation. Thus, in vitro

studies can provide vital information, unavailable from in vivo

preparations, regarding the cellular mechanisms of GBO genera-

tion within local cortical regions. In particular, studying oscilla-

tions in brain slices has several advantages: (1) the cellular and

molecular basis for changes in the oscillations can be studied using

recordings from specific cell types generating the oscillations, (2)

novel genetic technologies can be used to identify particular cell

types by the introduction of fluorescent markers and modulate

their activity to model pathological changes observed in schizo-

phrenic brains [130], (3) changes in oscillations can be ascribed to

local changes in neuronal circuitry rather than to changes in affer-

ent inputs, and (4) the elicited oscillations tend to be more specific

for the gamma band, allowing a more precise determination of

peak frequency and power. Recently, several groups, including

our own, have investigated GBO alterations with ketamine or

other NMDAR antagonists in vitro, in the hope of developing a

simple translational assay for potential therapeutic agents. It

remains to be seen, however, whether such experiments will have

predictive value in developing effective treatments.

In vitro experiments also have several disadvantages. They are

obviously not suitable for modeling psychotic symptoms in schizo-

phrenia or any of the behavioral symptoms induced by ketamine

and cannot recapitulate deficits due to impaired long-range com-

munication between cortical and subcortical sites [145]. Thus, it is

important to combine and compare the information obtained

from these studies with in vivo animal models and human studies,

as we do here.

Several studies [129–131,146,147] have examined the effect of

acute, bath application of ketamine or other NMDAR antagonists

on in vitro GBO and have identified some of the molecular and cir-

cuit changes, which may underlie both suppression and enhance-

ment of GBO in schizophrenia. The first studies using interface-

type slice chambers reported that GBO are either unaffected or

reduced in the hippocampus and neocortex [129]. However, since

then, several studies using different technology have shown that

NMDAR antagonist administration strongly increases the power

of GBO in the visual cortex, auditory cortex, and prefrontal (pre-

limbic) cortex [130,131,146,147]. These findings are more consis-

tent with in vivo findings of increased power and imaging studies

indicating increased activity in prefrontal cortex with ketamine

(e.g. [148]). While in vitro studies have a number of advantages

(described above), there are important methodological issues

Table 1 Comparison of gamma-band oscillations (GBO) in patients with schizophrenia, animal models of schizophrenia, and following applications of

ketamine to healthy humans, intact animals, and rodent brain slices

Enhanced GBO power Attenuated GBO

Schizophrenia (human) Background, psychosis

Spontaneous [140,141]

Hallucinations [122,134,135,180]

Prestimulus baseline [112]

Sensory-evoked Task related

(ASSR, visual stimuli, attention, working memory)

[113–121] (but see [133] for ASSR GBO increase)

Chronic animal models of

schizophrenia

Background

Prenatal MAM rat [101]

Amygdala picrotoxin rat [99]

PV-Cre/NR1 mice [136]

Dysbindin-1 mutant mice [107]

Sensory evoked-Task related

Prenatal MAM rat (reverse learning [89])

Neonatal VH lesion rat (ASSR [105,106])

PV-Cre/NR1 mice (opto-stim [136])

Dysbindin-1 mutant mice (ERP [107])

Reduced GBO reaction to NMDAR antagonists

Prenatal MAM [101,104]

Neonatal VH lesion rat [208]

PV-Cre/NR1 mice [136]

Acute ketamine or other

NMDA antagonists—human

Auditory ERP [28]

ASSR [124]

Magnetoencephalography [125]

Acute ketamine or other

NMDA antagonists –

in vivo rodents

Background

Spontaneous [25,109,127,128,142]

(NR2A [48])

Delayed in REM sleep (NR2B [100])

Prestimulus baseline-mice [26,103]

Sensory evoked

Auditory ERP-mice [26,103]

In vitro GBO in neocortex Bath application of ketamine or other

NMDAR antagonists [130,131,147]

(but see [129] for negative finding)

Reductions in peak frequency with bath application

of ketamine only [130,131]

Reduction in peak frequency ex vivo following 5 daily

i.p. injections [209]
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related to the generation of GBO in vitro which make it important

to compare in vitro findings to each other and to the findings asso-

ciated with in vivo application of ketamine.

The major difficulty of slice studies of oscillations is that in most

in vitro preparations, spontaneous GBO do not occur, as the affer-

ent inputs are severed during the slicing process. Therefore, some

means of increasing network activity is required to elicit the oscil-

lations. Pioneering early work by the Whittington group in the

hippocampus used tetanic electrical stimulation or application of

metabotropic glutamate receptor agonists [149]. However, most

groups now use application of the glutamate receptor agonist, kai-

nate [150], application of the cholinergic receptor agonist carba-

chol [151], or a combination of the two. Application of kainate

mimics the increased glutamatergic input caused by the activity in

other cortical areas and/or from the thalamus. The application of

carbachol mimics the release of acetylcholine in the hippocampus

and neocortex produced by the activity of basal forebrain cholin-

ergic neurons, during waking and rapid-eye-movement sleep

[152]. Rhythmic release of GABA from perisomatic, parvalbumin-

positive interneurons is required for GBO elicited by both kainate

and carbachol in vitro [153,154].

Until recently, the majority of slice oscillation studies were per-

formed in the hippocampus using the so-called interface or Haas-

type recording chambers, together with bath application of low

concentrations of kainate (typically in the high nanomolar range)

or carbachol. In interface-type chambers, the upper surface of the

slice is exposed to a humidified carbogen (95% O2/5% CO2) gas

mixture, which provides excellent oxygenation. An advantage of

this approach is that once induced, oscillations can be studied for

many hours. While this approach has produced a large volume of

high-quality and important data, it does not allow visually guided,

whole-cell recordings from specific neuronal subtypes labeled

using fluorescent markers, as this requires the use of high magnifi-

cation, water-immersion lenses. Recent studies in recording

chambers where the slices are completely submerged in artificial

cerebrospinal fluid suggest that GBO require a high oxygen level

[155], consistent with the correlation found between the blood-

oxygenation level (BOLD) and GBO in human imaging studies

[156]. Thus, improving oxygen flow to the slice by increasing the

flow of artificial cerebrospinal fluid to both surfaces of the slice

was found to facilitate GBO in submerged-type slice chambers.

However, even with such modifications, we could not reliably

induce GBO in neocortical slices [130]. Thus, we and others [157]

have used a modified method involving brief, focal application of

a higher (1 mM) concentration of kainate. This generates a rela-

tively brief (10 s of seconds) burst of GBO, which can be repro-

ducibly elicited provided sufficient time is allowed between

applications. These differences in methodology (kainate vs. carba-

chol, interface vs. submerged and prolonged vs. brief focal applica-

tion) should be born in mind when comparing different in vitro

studies as well as between in vitro and in vivo findings.

In addition to increasing the power of GBO, we also recently

found that ketamine slows the peak frequency from the gamma to

the beta range [130]. These findings are intriguing, given the

gamma?beta shift described in patients with schizophrenia [158]

and modeling studies which suggest that beta oscillations are more

effective in synchronizing activity over longer distances

[159,160]. This slowing of the peak frequency was not reproduced

by more selective NMDAR antagonists and was found to be an off-

target effect of ketamine on GABAA receptors, causing a slowing

of the decay time of inhibitory postsynaptic currents [130].

Low-Frequency Oscillations

Although recent research is primarily focusing on high-frequency

oscillations, there is also evidence of disturbances in slow rhythms

in the delta and theta bands in schizophrenia [161–165]. Func-

tional deficits are most likely the consequence of parallel impair-

ments of fast and slow rhythms as oscillations at different

frequencies have overlapping neuronal substrates [166,167] and

are hierarchically organized such that slow rhythms drive coordi-

nated shifting of excitability in local neuronal ensembles and opti-

mize gamma dynamics [168,169]. The oscillatory hierarchy

operating across multiple spatial and temporal scales [170,171] is

important for long-range synchronization between cortical areas

and plays a critical role in various cognitive processes [168,172].

Theta–gamma cross-frequency coupling was recently found

impaired in mice with genetically induced chronic NMDAR hypo-

function [137,173] and in rats after acute NMDAR blockade [48].

This effect also showed subunit specificity; that is, acute elevated

GBO induced by NR2A-preferring antagonists was associated with

a severe impairment of low-frequency theta modulation similar to

nonselective NMDAR blockade [48]. Theta-band deficits were also

found in sensory gating paradigm in schizophrenics and their

first-degree relatives compared with healthy controls showing a

significantly higher heritability than the commonly used P50 gat-

ing endophenotype [56]. Enhanced activity in the low-frequency

delta range is a common observation in schizophrenia [140,174]

and is replicated by NMDAR antagonists in preclinical studies in

vivo [110,111] and in vitro [175] as well as in the NMDAR hypo-

morphic mice model [176].

Cellular Mechanisms of Ketamine-
Induced and Schizophrenia-Associated
Changes in Cortical Oscillations

As discussed above, impaired oscillations in schizophrenia have

been linked to GABA pathology, that is, to reductions in GAD67

and PV expression [11,84–88,177]. PV+ interneurons are involved

in the generation of oscillations [178,179], suggesting a causal

relationship between this histological marker and decreased oscil-

lations documented in human schizophrenia [83,180] and in a

variety of animal models [26,89,106,107,136,173,181]. NMDAR

hypofunction was proposed to affect oscillations through changes

brought about in the interneuron network of the schizophrenic

brain [11,177]. PV+ interneurons are specifically vulnerable to

NMDAR blockade. NMDARs play a specific role in the mainte-

nance of the phenotype of PV+ interneurons. Exposure of cul-

tured PV+ neurons to ketamine induced time- and dose-

dependent decrease in PV and GAD67 [182]. Thus, NMDAR acti-

vation of genomic programs and intracellular signaling pathways

[182–185] may contribute to impairment of neuronal synchroni-

zation in schizophrenia in human [83] and in NMDAR hypofunc-

tion-based chronic animal models [27,137,186,187]. In contrast to

acute application of ketamine, which causes psychosis, chronic
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application of ketamine and other NMDAR antagonists has been

used to more closely model deficits in executive function. In rats

receiving daily injections of 30 mg/kg ketamine for 5 days [186],

there was a decrease in GAD67+ and PV+ cell number [27,188]

and a decrease in GBO power [27], which contrasts the increases

in power produced by acute ketamine. In preliminary studies, we

have also found reduction in peak frequency of oscillations and a

trend-level reduction in power in vitro207.

In our view, NMDARs on PV+ interneurons are relatively

unimportant for normal synaptic transmission (see discussion of

acute effects below) but serve as a sensor for the level of net-

work activity. Thus, GAD67 and PV may be downregulated in

response to the increased network activity produced by

repeated ketamine applications. This mechanism might also be

relevant in producing some of the subacute effects of adminis-

tration of a single dose of NMDAR antagonists, such as the

delayed GBO increase observed during REM sleep, 4–5 h after

injection of MK-801 [100]. In contrast to the relatively short

lasting (<1 h) effect of ketamine, MK-801 elicits longer-lasting

aberrant GBO elevation accompanied by stereotypic (waking)

behavior, which is then followed by a second type of enhanced

GBO, only occurring during REM sleep. The effect of NMDAR

antagonists preferably blocking NR2A subunit-containing recep-

tors resembles this two-component pattern [48], whereas selec-

tive NR2B blockade does not disrupt the sleep–wake cycle and

elicits REM sleep-related GBO enhancement at short latencies,

that is, starting right from the first REM sleep episode after

injection [100]. Thus, the delayed, REM sleep-related (appar-

ently NR2B-dependent) GBO elevation induced by MK-801

may involve subacute changes in the composition of NMDARs

in interneurons generating a relative NR2B hypofunction. This

is because NMDARs are regulated by receptor activity in a sub-

type-specific manner. Compensatory upregulation of NR2A but

not NR2B subunit-containing receptors can change the NR2A/

NR2B ratio as early as 4 hrs after MK-801 application to gener-

ate a relative NR2B deficit [189,190]. Acute application of

selective NR2B antagonists also enhanced kainate-induced GBO

in vitro, similar to general antagonists of the NMDAR [130].

Importantly, the NR2B subunit has been implicated as a schizo-

phrenia-susceptibility gene [191].

Ketamine-induced increased power of GBO also has often been

ascribed to a selective block of NMDAR on interneurons [192],

resulting in increased excitability of pyramidal neurons, as the

NMDARs on interneurons are reported to have a higher affinity

for these agents than those on pyramidal neurons in the hippo-

campus [193]. However, at the concentrations used in in vitro

GBO studies, most NMDARs in the slice are likely to have been

blocked. Furthermore, whole-cell recordings from fast-spiking in-

terneurons in the hippocampus and neocortex have revealed a

relatively minor contribution from NMDARs to synaptic currents

[194]. Thus, block of the more prominent NMDAR on low-thresh-

old spiking, dendrite-targeting interneurons may be more impor-

tant in increasing the excitability of the pyramidal neurons.

Furthermore, the acute potentiating effect of NMDAR antagonism

may also be due to block of the NMDAR currents on pyramidal

neurons reducing jitter of synaptic currents and thereby enhanc-

ing synchrony. Selective block of NMDA on different types of neu-

rons will ultimately be required to resolve this question.

Interestingly, an additional mechanism that may account for

increased power is the collapsing of high and low-gamma oscilla-

tors in deep and superficial cortical layers [131].

N-methyl-D-aspartate receptor blockade on dendritic-target-

ing interneurons, for example, those located in the stratum

oriens of the hippocampus and projecting to lacunosum-mo-

leculare (OLM), may also play a key role in changes of theta

rhythm after ketamine administration. These cells are very

sensitive to NMDA blockade [195]. They are not synchronized

with gamma oscillations [196] but play a critical role in gen-

erating theta rhythm [196,197]. Theta–gamma coordination is

important for cognitive processes [168,169], and OLM inter-

neurons were shown to critically contribute to the formation

of gamma-coherent cell assemblies at long distances by

entrainment at theta frequency [198]. A recent computational

study replicating essential features of hippocampal oscillatory

activity, including cross-frequency theta–gamma modulation,

explored the effect of different combinations of NMDA block-

ade in two pyramidal cell domains and on two types of inter-

neurons, that is, slow-firing OLM cells and parvalbumin-

positive basket cells firing at high rates and in synchrony with

gamma field potentials [199]. They found that the in vivo pat-

tern of reduced theta and enhanced GBO could only be elic-

ited by selective NMDAR blockade on OLM cells, whereas

NMDAR blockade on basket cells led to a decrease in gamma

power.

Furthermore, since the administration of ketamine also modu-

lates other receptors and neurotransmitter systems such as AMPA

and dopamine, the effect of ketamine on cortical oscillations

might include manipulations of these systems as well, for exam-

ple, an excessive AMPA receptor stimulation due to glutamate

spillover [200,201].

Finally, changes in cortical and hippocampal oscillations may

also develop due to mechanisms potentially related to NMDARs

outside of the cortex or hippocampus. Hippocampal theta power

and frequency is regulated by a number of subcortical structures,

including most importantly the pontine reticular formation, med-

ian raphe, supramammillary nucleus, and medial septum

[202,203]. Medial septum input also amplifies GBO [199], and the

involvement of medial septum and supramammillary nucleus in

NMDAR antagonist-induced gamma and PPI impairment has been

demonstrated [67,128]. Similarly, more caudally located basal

forebrain neurons may modulate neocortical theta and gamma

power [152]. In the brainstem, injection of MK-801 or AP-7 in the

theta-promoting pontine reticular formation had no effect,

whereas NMDAR blockade of the median raphe nucleus, nor-

mally inhibiting theta, was shown to produce theta rhythm in

the hippocampus at short latencies and long duration, in ure-

thane-anesthetized rats [204]. Local field potentials showed

enhanced GBO activity in several subcortical structures, includ-

ing accumbens, basalis, striatum, and thalamus [109]. An

NMDAR mechanism in the thalamus was also implicated in

altered cortical delta oscillations in schizophrenia [110,111,175].

In particular, the slowing and enhancement of delta waves in

the prefrontal cortex observed after systemic NMDAR antago-

nists were replicated by local microinjections of MK-801 into

the mediodorsal thalamus but not into the prefrontal cortex

[110].
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Conclusion

Both acute and chronic NMDAR blockade have been used in pre-

vious studies to validate the NMDAR hypofunction model. These

investigations found that alterations in fast-spiking interneurons

[182,188] and in cognition [50,186,205–207] were observed in

both types of models and were consistent with human data. Mea-

surement of EEG oscillations, which may serve as a link between

the pathology of GABA networks and cognition deficits, presents

a unique challenge, however, as the ketamine-induced acute

increase has to be reconciled with more commonly reported

chronic decreases of gamma activity in schizophrenics. We believe

that some of the differences between human EEG data and animal

models may be due to differences in the recording techniques/

experimental design and might thus point to inadequacies of the

recording paradigms used for assessment of oscillatory impairment

in schizophrenics rather than to limited validity of the animal

model. Critical comparison of the electrophysiological changes

induced by ketamine and other NMDAR antagonists with those

observed in patients with schizophrenia and animal models

(Table 1) suggests that in schizophrenia, GBO increases and

decreases may both be a consequence of NMDAR hypofunction,

that is, schizophrenia and NMDAR blockade on interneurons may

be associated with increased baseline GBO and decreased evoked GBO.

Ketamine, which can be used both in human and animals, may

play thus an essential role in developing the right methods and

standards for detecting schizophrenia-relevant cortical dysfunc-

tion as well as testing novel therapeutic agents targeting GBO.
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